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Abstract
The current–voltage relationship of organic diodes that are used as organic light
emitting devices is reported. Charged molecules are created at the electrodes
by an oxidation/reduction reaction. The charge moves across the material by
an electron transfer mechanism from a charged molecule to a neutral molecule.
The charges are described by a lattice gas because there is a low concentration
of charges. The concentration of charged molecules at the electrode is governed
by the Nernst equation and is coupled to the equations of transport. The
concentration of charge is determined by a competition between charge creation
and charge transport. The applied voltage creates the charge at the electrodes
and causes charge transport. The graphical analysis results in the charge density
and current density as a function of the applied voltage and the dependence of
the current density on both temperature and device thickness.

Nomenclature

µ Chemical potential
µ̃ Electrochemical potential
µ0 Chemical potential of pure substance
�G Gibbs free energy
k Boltzmann constant
q Charge of an electron
ε0 Permitivity of free space
ε Dielectric constant
T Temperature
n Number of electrons transferred in the reaction
j Current density
ρ Number density of charged molecules
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ρ0 Number density of charged molecules at electrode
ρm Number density of neutral molecules
u mobility
E(x) Electric field
L Length of device
φ Emf required to form the charges at the electrode
�V Voltage required to transport the charges
Vt Total applied voltage across the device (Vt = φ + �V )

1. Introduction

In 1987 Tang and VanSlyke reported on the phenomenon of light emission by passing an
electrical current across an organic bilayer system [1]. These devices became known as
organic light emitting diodes (OLEDs). The devices displayed unidirectional current flow and
an exponential current–voltage (i–v) curve although there was a significant negative curvature
in the log i versus v plot. The devices exhibited a rapid degradation in light emission (30%
loss in 10 h) followed by a much slower decay. Light emission was also observed in polymer
systems [2].

Several models are used to explain the charge injection and conduction in the devices. One
is a Schottky model in which the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) of the organic molecule are regarded to be analogous to
the conduction and valence bands of a semiconductor [3, 4]. A barrier is argued to form due to
the mismatch between the Fermi level of the metal contact and the HOMO or LUMO ‘band’.
A second model that has been applied to polymer systems is a Gaussian disorder model in
which the i–v relationship is determined by bulk transport [5–7]. The current is space charge
limited with an exponential field dependent mobility.

Light emission from a solution containing organic molecules has also been observed.
This is known as electrochemically generated chemiluminescence. In this process, an electric
current is passed between metal electrodes through a solution containing organic molecules.
Radical cations are formed at the anode while radical anions are formed at the cathode.
Subsequent recombination of the anions and cations in solution yields an excited state from
which there is emission of light. Organic molecules that have been used include rubrene [8]
aromatic amines, nitriles, nitro and polycyclic compounds [9]. It should be noted that these
aromatic molecules are identical in composition to those in OLEDs. Further, the same rapid
degradation in emissive properties (50% degradation in 50 h) followed by a much slower
emission degradation was also observed in these systems [10].

While the majority of theories describing OLEDs stem from the application of band
structure, it is the goal of this paper to describe how electrochemical processes can describe
the conduction mechanism in OLEDs.

The essential features of the model are described in section 2. The chemical potential
of the lattice gas and the electrochemical potential with a local electric field are presented in
section 3. The emf required to form the charges at the electrodes is given in section 4. The
charge transport described in section 5 results from electrostatic effects. The current–voltage
relation in section 6 is obtained from the derived charge density by minimizing the voltage
with respect to the concentration of charged ions at the surface for a fixed current density. The
graphical analysis in section 7 results in plots of the charge density and current density as a
function of the potential and the current density as a function of both temperature and device
thickness. Finally, the discussion in section 9 relates the calculated results with properties of
OLEDs and previous models of conduction. The conclusions are given in section 10.
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2. Description of the model

In order to understand the conduction process in OLEDs we must find a model that is consistent
with the chemical and physical properties of the material in question. The organic systems are
molecular crystals with a typical molecular weight that is between 200 and 500 g mol−1. The
forces holding the molecules together are weak van der Waals forces, not the strong metallic
or covalent bonding that is typical in metals and semiconductors. While models abound using
band theory to describe the conduction process in organic material, these in the strictest sense
are only analogies. The valence electrons are not free to flow between molecules as they are
in metals and semiconductors. As such, descriptions involving electron and hole conduction
in pseudo conduction and valence bands are questionable.

Our starting point is the electrochemical oxidation/reduction reaction of organic molecules.
It is known that the kinetics of aromatic electrochemical reactions are extremely facile
compared with inorganic electrochemical reactions [11]. As such, the processes are
generally limited by thermodynamic rather than kinetic factors. The difference between an
electrochemical cell and conduction in OLEDs is the fact that the conduction occurs in the
solid state in the latter. Therefore the transport of charges does not occur via diffusion and
mass transport of solvated charged ions. Since there is no electrolyte to compensate for charge
imbalance, electrostatic effects must also be addressed. The model of the current–voltage
behaviour is determined by the thermodynamic consideration for the creation of charged
molecular species at the electrode surface and the subsequent transport of the charges to the
counter-electrode via a series of electron transfers between molecules.

This mechanism is not completely new. In 1986, Abkowitz described conduction of
tetraphenyldiamine in polycarbonate films [13]. In the article, the author stated that it is now
generally accepted that charge transport is an electric-field driven sequence of redox processes
involving neutral molecules and their charged derivatives. Further, it was stated that electron
transport consisted of the electron transfer between anion radicals and neutral molecules, while
hole transport involves electron transfer from a neutral molecule to its radical cation. Finally,
he stated that it is the chemical nature of a given charge transport molecule which determines
the sign of unipolar transport. The above statements reflect an electrochemical approach to
transport. While the term ‘hole transport’ is used, it clearly does not imply a semiconducting
band theory meaning of the term ‘hole’.

It is apparent that current flows through the device;hence charge must traverse the material.
The material does not possess intrinsic charges and as such the charges must be created at the
electrodes. Here at the electrode surface radical cations and anions are formed. The electric
charge is then transferred from molecule to molecule across the material. The energy required
to form the ions is determined by the electrochemical potential. The current–voltage curve
results from the resultant of charge creation and charge transport.

The device consists of an organic material between a negative cathode and positive anode.
A voltage is applied across the device and current flows between the metallic electrodes. Charge
is transferred between the contacts and the organic molecules by an electron transfer reaction.
Electrons are transferred from the cathode in a reduction process or moved to the anode via
oxidation. Both or one of the processes takes place depending on the organic molecules that
are present. This process requires a redox potential of several volts. The charge is delocalized
over the aromatic molecule and not localized to one atom such as in an ionic crystal. Also,
there is a low concentration of ions with a density of about 1 part in 106.

The charge moves across the material by an electron transfer process. Aromatic organic
molecules are unique in that the π electrons are delocalized over the entire ring structure.
Thus, all π electrons are shared within the molecule. Removing or adding an electron from
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a molecule results in a much smaller change between the initial and final nuclear positions
of the atoms than in corresponding inorganic systems; therefore, the overlap of the electron
wavefunction between the oxidized and reduced species is much higher than in inorganic
systems. It is known that the rate of electron transfer depends on the overlap of electron
wavefunctions between the neutral and oxidized or reduced species. As such, the electron
transfer rate in aromatic organic molecules is orders of magnitude greater than in inorganic
electrochemical species [12]. This theory is applied to both homogenous electron transfer
and heterogenous electron transfer. Homogenous electron transfer is when an electron is
transferred between neutral and oxidized or reduced species. Heterogenous electron transfer
describes the oxidation or reduction of the molecule at the electrode. The theory of electron
transfer has been worked out by Marcus [14, 15], Levich [16] and others [17].

While the electron transfer theory is general, in application the kinetics of the current–
voltage relationship is usually given by the Butler–Volmer relation of electrochemistry. This
phenomenological model accounts for kinetic effects associated with the electron transfer at
the electrodes. In the limit of very facile kinetics, the equation reduces to the Nernst equation.
Since the rate of electron transfer in aromatic systems is orders of magnitude greater than in
inorganic electrochemical systems, the Nernst equation is a valid starting point for describing
not only systems at equilibrium but also systems in the steady state in which current flows.

The applied voltage is partitioned between the redox potential and the potential across the
device. It should be noted that the electric field, charge gradient and density of charges at the
electrodes are not independent of each other. The applied voltage is partitioned in many ways
depending on the material parameters, geometry and current driven through the device. The
applied voltage creates the charges and drives the current.

A lattice gas is used to determine the chemical potential of the radical ions. The lattice
gas is based upon the assumption that a particle can occupy any site on a lattice with equal
probability. In the system, the radical ion can spontaneously transfer charge to any molecule
around it. While there exist electrostatic interactions between the charged molecules, the
concentration of charged molecules is so dilute that it does not appreciably affect the number
of states that are accessible; therefore, the charge has an almost equal probability of occupying
any site on the lattice.

This chemical potential is used to calculate the energy required to create charges at the
electrode surface. The transport of charges is due to the electric field, which is considered in
section 5.1. The solution to the charge transport involves solving the equation of continuity
subject to Gauss’ law. The current at each point in the device must be constant, because in
steady state there is no charge accumulation.

The applied voltage is the sum of the potential required to transport the charge plus the
voltage required to create the charges at the electrodes. The concentration of charged ions at
the electrode surface, which is the boundary condition, is determined by minimizing the total
applied potential for a given current.

In order to get a better feeling for the dynamics within the system a simplification is
employed to elucidate the dynamics. If the current density is large and the mobility small
the equations imply that the charge density is nearly constant across the material. Using this
simplification, an analytic expression for the current–voltage curve is derived.

3. Chemical potential

Organic molecules in the condensed phase constitute a molecular crystal with strong
intramolecular covalent bonding within the molecule and very weak intermolecular van der
Waals forces between the molecules. Due to this weak bonding the electronic energy levels
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do not extend to neighbouring molecules as in a metal. However, it is known that the charge
on a molecular ion can spontaneously transfer from one molecule to another via a series of
electron transfers [18]. The entropy associated with the possible ways the charges can be
placed leads to a lattice gas description of the system. The chemical potential (µ) is thus given
by equation (1).

µ = µ0 + kT ln
ρ

ρm
. (1)

The chemical potential is the Gibbs free energy per molecule. In equation (1), ρ is the
density of charged molecules, while ρm is the density of all molecules. µ0 is the Gibbs free
energy of the pure substance. When the molecule is charged, an electric potential alters the
chemical potential. This electrochemical potential µ̃ includes both the chemical potential and
the effect of the electric potential (V ) at that region of space. In equation (2), nq is the charge
of the charged species.

µ̃ = µ0 + kT ln
ρ

ρm
+ nqV . (2)

This chemical potential can also be derived as an extension of electrochemistry or from
general statistical mechanical considerations. While the chemical potential is known as the
dilute solution approximation in chemistry, it is known as a lattice gas in physics. Since the
equations of electrochemistry stem from the same basic form of the chemical potential, the
subsequent analysis bears a similar resemblance to electrochemistry.

A chemical potential of the form (2) is typical of many electrochemical systems. For
example, Bernard et al [19] describe a mean-field kinetic lattice gas model of electrochemical
cells having an electrochemical potential given by equation (3). Such an expression represents
a generalized potential for species α at lattice site k. Here pα

k represents the probability that
species α occupies lattice site k and ε represents the energy of interactions between the chemical
species (α, β).

µ̃α
k = −

∑

β

∑

a

εαβ pβ

k+a + kT ln pα
k + qαVk . (3)

The double sum is over all species β and neighbouring lattice sites a. The model that is
currently under investigation is one in which the concentrations of charged species are very
dilute because the cations and anions are surrounded by a sea of neutral molecules. Since
the concentration of charged molecules is very small, the double sum is independent of k and
results in a constant. This returns us to the original form of equation (2).

The essential difference between electrochemistry and the current analysis is that in an
electrochemical cell no net electric charge exists between the electrodes. Further, the electric
field between the electrodes is rather small. As such, the nqV term in the chemical potential
does not have a significant effect in electrochemical systems. There exists in the system under
consideration added coulombic interactions due to the space charge between the electrodes.
This additional energy depends upon the charge distribution within the device. This added
term will be accounted for when the voltage required to transport the charges is considered.

4. Charge creation at the electrodes

The emf required to form the charges at the electrodes will be evaluated now. The emf is
derived by determining the energy required to form the charged species at the electrodes. At
the anode radical cations are formed, A → A+ + e−, while at the cathode radical anions are
formed, A + e− → A−. A represents any molecule that can be oxidized or reduced. The net
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reaction is 2A → A+ + A−. The number densities of the species A+, A− and A are ρA+, ρA− , ρn

respectively. The Gibbs free energy change �G given in equation (4) is the difference in the
chemical potential of the products and the reactants.

�G = µA+ + µA− − 2µA. (4)

The chemical potential for each species is represented by the lattice gas formula given by
equation (1). The chemical potential of the pure substance (µ0) for each chemical species can
be combined into a single term �µ0. This term represents the free energy change when the
concentrations of the reactants and the products are equal. The log terms of equation (1) can
also be combined to form a single term. This treatment follows the standard derivation used
in chemical thermodynamics [20].

�G =
(

µ0
A+ + kT ln

ρA+

ρm

)
+

(
µ0

A− + kT ln
ρA−

ρm

)
− 2

(
µ0

A + kT ln
ρn

ρm

)
(5)

�G = �µ0 + kT ln
ρ+

Aρ−
A

ρ2
n

. (6)

The free energy �G is related to the emf φ required to form the charges.

�G = −nqφ. (7)

The number of electrons transferred to a single molecule in the reaction is represented by
n, q is the magnitude of the charge of an electron, and φ is the emf required to form the charge
density at the electrodes. In our model, one electron is transferred to each molecule and hence
n = 1. In addition the vast majority of molecules are neutral; hence, ρn ≈ ρm. Combining
equations (7) and (6) with ρn ≈ ρm results in the Nernst equation (8).

φ = φ∗ +
kT

nq
ln

(
ρA+ρA−

ρ2
m

)
. (8)

The cell or redox potential represented by φ∗ is a constant for a given chemical reaction.
Equation (8) implies that the density of charged molecules increases exponentially with voltage.

5. Derivation of charge transport

The charges that have been created at the surface of the electrode move from molecule to
molecule to the counter-electrode surface. For simplicity, only the motion of carriers with the
same charge will be considered. The positive charges are assumed to move under the applied
field while the anions remain stationary. In general the current density ( j) is proportional to
the gradient of the electrochemical potential (equation (9)) [21]. This approach follows other
methods used to describe conduction in electrochemical cells [19].

j ∝ ∇µ̃ = ∂

∂x

[
µ0 + kT ln

ρ

ρm
+ qV

]
=

[
kT

ρ

∂ρ

∂x
+ q

∂V

∂x

]
. (9)

There are two terms in equation (9) that drive the current. The first term is proportional to
the gradient of the charge density,while the second is proportional to the gradient of the voltage.
These two terms will be denoted as the electrochemical and electrostatic terms, respectively.

In the electrostatic process the steady state motion of the charge is driven by the electric
field between the electrodes. Due to the uncompensated charges on the molecule, the transport
is dominated by space charge effects. In the electrochemical process, charge is driven by virtue
of the concentration gradient of charged molecules within the material. Both effects contribute
to the overall conduction process.
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5.1. Electrostatic transport of charges

Electrostatic effects driving the conduction will be considered now. Steady state continuity
implies that the current is a product of the charge density and the electric field assuming that
the mobility is constant. The mobility is designated by u to distinguish it from the symbol
used for the chemical potential. The standard solution of space charge limited currents has the
Dirichlet boundary condition that the electric field goes to zero at the electrodes. However,
this implies that the concentration of ions at the electrode surface goes to infinity at x = 0.
If there are no other factors affecting conduction, allowing E = 0 at the boundary minimizes
the voltage required to drive charges across the material. Since the field varies as the square
root of x while the charge density varies as the inverse of the square root of x , allowing E = 0
while the charge density goes to infinity at the boundary yields a finite current. However,
due to the aforementioned electrochemical factor the derivative of the charge density can also
drive the current. This would lead to an infinite chemical potential gradient driving an infinite
charge density giving an infinite current. Further, due to the Nernst equation (8), maintaining
an infinite charge density at the electrode requires an infinite voltage. Since this is unphysical
we will apply Neumann boundary conditions ρ(x = 0) = ρ0 at the boundary.

The current density is equal to the charge density times the mobility and the electric field.

j = qρ(x)u E(x). (10)

Since from Maxwell’s equations dE/dx = qρ(x)/εε0 combining equation (10) with
Maxwell’s equations leads to equation (11).

dE

dx
= j (x)

u E(x)εε0
. (11)

Integrating equation (11),
∫

E(x) dE =
∫

j (x)

uεε0
dx .

Substituting the equation of continuity (10) into Gauss’ law (11) leads to a differential
equation. Solving the differential equation we obtain equation (12). The charge density at the
boundary (ρ0) determines the integration constant. For clarity and to simplify the equations
the variable xc is introduced.

E(x) =
√

2 j

εε0u
(x + xc) ρ(x) = ρ0√

1 + x
xc

xc ≡ εε0 j

2uq2ρ2
0

. (12)

The potential difference �V required to drive the current across the device length (L) is

�V =
∫ L

0
E(x), dx = 2

3

√
2 j

εε0u
[(L + xc)

3/2 − (xc)
3/2]. (13)

There are several important limits that need to be considered. xc defines a length scale
over which the charge density drops to 1

√
(2) of its initial value. If we let xc go to zero, the

density of ions at the surface (ρ0) goes to infinity at x = 0. Equation (13) then reduces to
the classic Child’s law result of equation (14). As such, the above relation is a general space
charge equation for which Child’s law is a particular solution.

lim
xc→0

ρ(x) = 1

q

√
εε0 j

2ux
lim
xc→0

�V = 2

3

√
2 j L3

εε0u
. (14)
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It is not necessary for the charge density to actually go to infinity to arrive at the classical space
charge result. If the inequality of equation (15) holds, then xc becomes negligible compared
to L in equation (13).

ρ0 � 1

q

√
jεε0

2uL
(15)

Another important limit occurs if we let xc go to infinity. The charge density becomes
constant across the material and the voltage required to drive the charges reduces to Ohm’s
law. This can be derived by taking a Taylor expansion of equation (13) if xc � L.

lim
xc→∞ ρ(x) = ρ0 lim

xc→∞ �V = j L

uqρ0
. (16)

The voltage in (16) is the potential difference required to drive the charges from the anode to
the cathode.

6. Current–voltage relationship

It is now time to determine the i–v relationship. Consideration must be given to the voltage
required to maintain the charge density at the electrodes and the voltage required to drive the
current. If the mobility is sufficiently low and the current density is sufficiently high the space
charge limit equation (12) reduces to an ohmic result (16). In this limit the electrochemical
term drops out since the charge density is uniform (ρ(x) = ρ0). The mobility of carriers in an
organic material is several orders smaller than that in metals and semiconductors and therefore
equation (16) can accurately describe certain systems.

This leads to an ohmic voltage drop across the bulk of the sample �V = j L/qρ0u. The
total potential for a given current is the sum of the emf required to create a given charge density
at the electrodes given by the Nernst equation (8) and the voltage to transport the charges. An
additional voltage representing the electrostatic energy associated with the charge distribution
also needs to be accounted for. If the positive charge is uniformly distributed in the material and
an equal amount of negative charge resides near the counter-electrode there is an electrostatic
voltage of qρ0 L2/εε0. The total voltage Vt for a given current is the sum of these three voltages
given by equation (17).

Vt = φ∗ +
kT

nq
ln

ρ0

ρm
+

qρ0 L2

εε0
+

j L

qρ0u
. (17)

The first two terms are the voltage required to create the charge density at the surface
(Nernst equation), ρ0 is the density of charged molecules and ρm denotes the density of neutral
molecules. The third term is the voltage required to overcome electrostatic repulsions which
the Nernst equation does not include. The fourth term is the voltage required to move the
charges across the material.

It should be noted that the added electrostatic field affects the charge distribution and causes
deviations from a constant charge density. However, if the electrostatic voltage is less than
the voltage required to transport the charges (the third term is much less than the fourth term
in (17)) then this electrostatic field can be treated as a perturbation. A more general expression
will be given in a subsequent publication. A non-uniform distribution of the charge density
will affect the specific equation representing the electrostatic repulsions; however, a similar
expression relating the electrostatic voltage with the charge density and device thickness will
be obtained.

It is assumed that the current is transported by a single carrier. This can occur when the
mobility of one charge type (positive or negative) is much greater than the other. Alternatively,
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it can occur with only a single charge type in the material. Either possibility leads to a similar
expression given by equation (17).

There is now an optimization condition; while it requires more voltage to create a higher
density of charges, the ohmic voltage is reduced by an increase of charges. As such the density
of charged ions will depend on the applied current. In order to determine the current–voltage
behaviour, we need to know the density of charged molecules as a function of current.

For a given applied voltage, equation (17) defines the charge density and current density.
It is necessary to determine the charge density, as the charge density and current are not
independent of each other. The voltage and hence the power dissipated within the material goes
through a minimum at a certain charge density. Since nature chooses the path of least resistance,
the charge density is determined by the density which minimizes the power dissipation. This
follows from the example given by Feynmann, who stated that the current is determined so
as to minimize the rate at which heat or energy is generated in the material [22]. As such the
concentration of charged ions at the electrode surface is determined by minimizing the voltage
with respect to charge density at a fixed current density.

dVt

dρ0
= q L2

εε0
+

kT

nqρ0
− j L

qρ2
0 u

= 0

ρ0 = εε0

2q L2

[
−kT

nq
+

√(
kT

nq

)2

+
4 j L3

εε0u

]
.

(18)

The reason for this minimum is that there is an opposition between electrostatic forces
attempting to expel all charges from the material and resistive forces impeding the motion of
charges. If the charge density is less than the charge density at the minimum, it requires less
force to increase the charge density than to drive current through the material. Likewise, if the
charge density exceeds the value at the minimum, electrostatic forces exceed resistive forces,
and charge is expelled from the medium. As such the charge density lies at equilibrium at the
energy minimum in steady state.

If the charge density is uniform across the material or has only a small change as a function
of distance, the charge density that minimizes the voltage as a function of current results in a
quadratic expression which can be solved analytically. The model assumes that the mobility
of one of the carriers dominates the transport.

7. Graphical analysis

The above equations (17) and (18) will be solved with the following parameters: L = 100 nm,
u = 1×10−5 cm2 V−1 s−1, T = 300 K, ρm = 2×1021 cm−3, ε = 1, ε0 = 8.85×10−12 F m−1.
The numerical values of the mobility, thickness and number density of the material are
parameters that are typical of organic materials used in OLEDs. Graphs of the charge density
and current as a function of the applied voltage are shown in figures 1 and 2. A redox potential
(φ∗) of 3.0 V, which is a typical value in organic material is assumed in the following graphs.

As we can see in the first graph (figure 1), the charge density rises exponentially at low
applied voltage and tapers off at higher voltages. The initial increase arises from the first term
(Nernst equation) where the charge density increases exponentially with voltage. As more
charge is injected into the system the third electrostatic term in equation (17) impedes further
creation of charges. As such the charge density does not increase significantly with increasing
potential. The charge density levels off at about 5.4 × 1016 cm−3. This value is much smaller
than the number density of neutral molecules (number of molecules per unit volume). Thus
our approximation that the number of neutral molecules is constant is justified.
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Figure 1. Charge density versus applied voltage (equation (18)). ρm = 2×1021 cm−3, T = 300 K,
u = 1 × 10−5 cm2 V−1 s−1, L = 100 nm, φ∗ = 3.0 V.

Figure 2 shows the current as a function of applied voltage. The current at first increases
exponentially with applied voltage and then begins to increase at a rate that is more quadratic
in nature. As the current increases, the system can either increase the number of charges or
increase the speed at which they cross the material. At low applied voltages it is easier to create
more charges, as the charges increase exponentially with voltage. As the current increases, the
electrostatic term inhibits further increase of charges. Therefore more voltage is used to drive
the charges across the material, leading to electrostatic limitation of the current.

There is negligible current and charge for voltages less than 2–3 V. In this range the
voltage is less than the redox potential, and significant numbers of charged molecules are not
generated. The sole effect of a change in the redox potential is to shift the curves to higher
or lower potential. This is taken into account in electrochemistry by subtracting the redox
potential of a molecule from the applied voltage to form the overpotential. It is not used here.

The dependence of current and voltage upon temperature can also be investigated.
Using the same equations the current–voltage behaviour as a function of temperature can be
calculated. Since the equation determines the voltage at fixed current densities, it is necessary
to interpolate the values to obtain the current at fixed applied voltages. The current at a fixed
voltage is then plotted as a function of temperature (figure 3). The current increases linearly
with temperature in the temperature range 260–360 K.

As a final analysis, the current–voltage behaviour for different thicknesses is also
examined. By varying the thickness of the device we obtain a series of curves (figure 4).
As the thickness increases, the voltage required to obtain a fixed current also increases.
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Figure 2. Current density versus applied voltage (equation (17)). ρm = 2×1021 cm−3, T = 300 K,
u = 1 × 10−5 cm2 V−1 s−1, L = 100 nm, φ∗ = 3.0 V.

To summarize the results of charge transport, the following properties are predicted.

(i) When the thickness or current density is small the current varies exponentially with voltage.
(ii) At higher currents the log current versus voltage curve exhibits a negative curvature. The

current varies quadratically with voltage at high currents.
(iii) At a fixed applied voltage the current increases linearly with increasing temperature.
(iv) As the device thickness increases, the voltage required to obtain a constant current also

increases.

Several simplifications have been used to obtain an analytical expression for the current–
voltage characteristics. However, the above four properties are fundamentally linked to the
basic physics regarding the creation of the charges, the electrostatic interactions of the charges
and the transport of the charges across the material. The exact form of the charge distribution
will affect the term used in representing the electrostatic repulsion. This will change the
numerical value of the equations but not the qualitative behaviour.

8. Thickness effect

A further approximation can show why the current–voltage curves appear quadratic when
the film thickness is large. In equation (18) it is possible for 4 j L3/uεε0 to be much greater
than (kT/q)2. If the film thickness is 100 nm, the mobility 10−5 cm2 V−1 s−1 and current
density 10−8 A cm−2, then the voltage corresponds to 6.7 mV. Since kT/q is only 25.4 mV
at room temperature, it does not require a large increase in thickness or current density for
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Figure 3. Current density versus temperature, at 8 V applied voltage.

the second term to dominate. When this is true, the charge density is given by equation (19).
The term in the square root is the charge density, while 1/q times the quantity is the number
density of charges. Substituting this result back into equation (17) yields, after simplification,
equation (20).

ρ0 = 1

q

√
jεε0

uL
(19)

Vt = φ∗ +
kT

q
ln

1

ρm

√
jεε0

uL
+ 2L

√
j L

uεε0
. (20)

The two different limits are seen easily now. If the thickness is sufficiently small the
second term dominates, and a current that depends exponentially on voltage is obtained. At
the other limit when the thickness of the film is large, the third term dominates, yielding a
current that depends quadratically on the voltage and is inversely proportional to the cube of
the thickness. This is a space charge regime.

9. Discussion

It has been found that the behaviour of organic light emitting diodes exhibits the four properties
mentioned in section 7. The negative curvature in the log current versus voltage plots are evident
in these systems [1, 23]. The linear temperature behaviour is also observed [23]. Finally, it is
observed that the voltage required to drive current in the device increases with thickness [23].
This of course would not occur if the current were limited by a Schottky barrier. While it is
generally observed that thin films (100 nm) exhibit a pseudo exponential current versus voltages
behaviour, quadratic behaviour is observed for thicker films [13, 24]. This is in agreement
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Figure 4. Current density versus applied voltage for different device thicknesses. (◦) L = 50 nm,
(�) L = 100 nm, (�) L = 150 nm.

with the results of section 8. These results assume the charge density is uniform across the
material. In general the charge density will decrease across the material. This modification
will be considered in a subsequent publication.

Thus, the above theory represents a novel mechanism explaining conduction in organic
material that does not rely on band theory to explain the charge transport. The conventional
models in OLEDs use band theory and Schottky barriers to explain the exponential current–
voltage behaviour, while others use space charge effects to explain a quadratic voltage
dependence. The above theory shows that the two observations are not the result of separate
mechanisms of carrier transport but rather two regimes of behaviour.

In addition, the above theory correctly predicts a linear variance of current at fixed field
when the temperature is varied. Conventional models of OLED operation utilizing Schottky
barriers predict an exponential temperature behaviour, while tunnelling models predict no
dependence on temperature. Those models based upon space charge limited conduction require
that the mobility must increase linearly with temperature to explain the observation.

Finally, the electrochemical properties of molecules can now be related to their use in
OLED construction. Since it is the chemical nature of a given charge transport molecule which
determines whether a molecule can be oxidized or reduced [13], it is possible to understand
the polarized nature of OLEDs as observed by Tang [1] with an electrochemical interpretation.
Oxine (8-hydroxyquinoline) is known to form radical anions [25], while triphenyl substituted
amines (TPD) are known to form very stable radical cations [26]. The molecule tris-8-
hydroxyquinoline aluminium (Alq) would therefore be reduced at the cathode, while TPD
would be oxidized at the anode. Since Alq cannot be oxidized nor TPD reduced, reversing the
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applied voltage would not lead to current flow. It should be noted that not all molecules would
behave in a similar fashion. Rubrene is known to form stable cations and anions; hence, a
bilayer device composed of molecules that could be both reduced and oxidized would not be
polarized.

One aspect of the electrochemical model is that it assumes that the electrodes are inert. It
is possible for chemical reactions to occur at the cathode because metals are reducing agents.
It is known that most unsubstituted aromatic molecules form stable radical anions in solution
when alkali metals are added. Hence metals with low reduction potentials, such as aluminium,
magnesium and calcium, would undergo chemical reactions. Such processes are not considered
in this paper.

The power of this model is its unifying nature. Currently, electrochemical processes
describe light emission in solution of aromatic molecules, Schottky barriers describe the i–v

relation when the same molecules are in the solid phase, while a Gaussian disorder model
describes conduction processes in polymer solid state devices. Using the above lattice gas
model, all three can be treated by a single formalism. The exponential i–v behaviour is not a
result of barrier formation or exponential mobility but rather reflects the fact that there are no
intrinsic charges to conduct the current. The charges must be electrochemically generated at the
electrodes, and the �G of the chemical reaction is the origin of this exponential dependency.
Further, as more current is driven in the system, more charge accumulates which increases the
energy of radical ion formation. This is the origin of the negative curvature in the log i versus
v plots. The current–voltage characteristics result as an interplay between charge creation and
transport. The ‘built-in’ potential that is added ad hoc to the Schottky models of OLEDs can
be interpreted as the cell or redox potential of the system.

Most importantly, the electrochemical model explains the material choice used in OLEDs.
As stated by Abkowitz: ‘It is thus the chemical nature of a given charge transport molecule
which determines the sign of unipolar transport’ [13]. In the current semiconductor approach
to OLEDs, the theory is divorced from the material. Both n-type and p-type behaviour in
semiconductors are achieved through impurity doping. If a band model is used to explain
OLEDs, since all molecules possess both a HOMO and LUMO it is not apparent what causes
a certain material to be a ‘hole’ conductor. It is interesting to note that the justification for
Tang’s designation that TPD is a hole conductor was the paper by Abkowitz. However clearly
in Abkowitz’ article ‘hole’ conduction is used to denote an electrochemical process. Such an
explanation is incompatible with the band theory definition of a hole.

10. Conclusions

In conclusion, a novel lattice gas approach to conduction in organic material has been
presented. In this model, charged radical cations and anions are formed at the electrodes.
The i–v behaviour results from a competition between charge creation and charge transport.
A simplified solution to the current–voltage relationship is obtained that agrees qualitatively
with the observed OLED behaviour. The model implicitly assumes that one charge dominates
the transport, that the mobility is constant, and that the electrodes are inert. The charge density
is assumed to be uniform in order to obtain a closed form solution. This limit is reasonable for
certain device parameters. A more detailed approach involves solving the system accounting
for both electrochemical and electrostatic effects.
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